The Circle - Lesson 10-1
Here's the warmup!

Given: ๑O
radius $=12$
$A B=12$
$\overline{\mathrm{OP}} \perp \overline{\mathrm{AB}}$
Find: OP

Today, we're going to go over quite a few notes about circles - lots of definitions, starting with circle, the center of a circle, and the radius of a circle:

A circle is the set of all points in a plane at a given distance from a given point in the plane.

The given point is the center of the circle. You name a circle by its center (e.g., $\odot \bigcirc$).

The given distance is called the radius of the circle (e.g., $O A$ is the radius of $\odot O$). A segment from a point of the circle to the center is also called a radius (e.g., $\overline{O A}$ is a radius).

Any two radii of a given circle are congruent.

Next are congruent circles and concentric circles:

Next, let's look at what interior, exterior, and on the circle mean:

A point is inside (in the interior of) a circle if its distance from the center is less than the radius (e.g., Point X).

A point is outside (in the exterior of) a circle if its distance from the center is greater than the radius (e.g., Point Y).

A point is on a circle if its distance from the center is equal to the radius (e.g., Point Z).

Here are chords, diameters, and secants:

A secant of a circle is a line that contains a chord $\stackrel{\leftrightarrow}{\mathrm{AB}}$ is a secant).

Now, let's define a tangent to a circle and the distance from the center of a circle to a chord.

We'll wrap up by discussing three theorems related to chords:

Theorem 73
If a radius is perpendicular to a chord, then it bisects the chord.
$\overline{\mathrm{OD}} \perp \overline{\mathrm{AB}} \Rightarrow \overline{\mathrm{OD}}$ bisects $\overline{\mathrm{AB}}$

Theorem 74
If a radius of a circle bisects a chord that is not a diameter, then it is perpendicular to that chord.
$\overline{\mathrm{OD}}$ bisects $\overline{\mathrm{AB}} \Rightarrow \overline{\mathrm{OD}} \perp \overline{\mathrm{AB}}$

Theorem 75
The \perp bisector of a chord passes through the center of the circle.

